Least Squares Pure Imaginary Solution and Real Solution of the Quaternion Matrix EquationAXB+CXD=Ewith the Least Norm
نویسندگان
چکیده
منابع مشابه
The least-square bisymmetric solution to a quaternion matrix equation with applications
In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...
متن کاملGlobal least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کاملthe least-square bisymmetric solution to a quaternion matrix equation with applications
in this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation xa=b to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. as applications, we derive sufficient and necess...
متن کاملThe Minimum-Norm Least-Squares Solution of a Linear System and Symmetric Rank-One Updates
In this paper, we study the Moore-Penrose inverse of a symmetric rank-one perturbed matrix from which a finite method is proposed for the minimum-norm least-squares solution to the system of linear equations Ax = b. This method is guaranteed to produce the required result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2014
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2014/857081